Rovnice s logaritmy

Exponenciální funkci si většina z nás představit umí, u logaritmu je to už horší. Přitom se jedná o inverzní funkci k té exponenciální. Počítání s logaritmy a exponenty není složité, je třeba si uvědomit, které číslo v zápisu logaritmu je základ, které je exponent a které výsledek. Jakmile si toto ujasníte, hned se vám budou logaritmy počítat snáz.

Některé logaritmy jsou obzvlášť důležité, jedním je přirozený logaritmus, jehož základem je Eulerovo číslo e, ten značíme ln. Druhým důležitým je dekadický logaritmus log o základu 10. Pokud u logaritmu není uveden základ, předpokládá se, že jde o dekadický logaritmus. U exponenciální funkce je podmínkou, že základ tvoří reálné číslo větší než nula a různé od jedničky. Díky tomu i pro základ logaritmu platí stejné podmínky.

Pokud si budeme chtít nakreslit funkci logaritmickou, platí pro ni, že vždy prochází bodem [0,1]. Je to dáno tím, že ať už jakékoli číslo umocníme na nultou, vždy dostaneme jedničku. Mátly vás vždy operace s logaritmy a nejraději byste utekli, když se v příkladu objevila zkratka log? Žádnou paniku, stačí si počty s logaritmy nacvičit na několika příkladech. Ty jsou vám k dispozici v internetové sbírce Příklady.com, kde naleznete velké množství příkladů pro procvičení početních operací s logaritmy a také dalších matematických témat. Naleznete zde příklady na zlomky a operace s nimi, dále rovnice a nerovnice, funkce, kombinatoriku nebo třeba limity, derivace a integrály.

Internetová sbírka příkladů z matematiky Příklady.com vám pomůže procvičit příklady z matematiky pro střední školy. Připravíte se zde na písemku, maturitu i vysokoškolskou zkoušku. Najděte si zde příklady, které potřebujete procvičit, spočítejte je a výsledky zkontrolujte opět zde na Příklady.com. Hned budete vědět, zda jste látku již pochopili.