Jak na rovnice a nerovnice

Rovnice a nerovnice a jejich řešení patří chtě nechtě k základnímu učivu matematiky a časem bude potřebovat asi každý z nás umět tuto problematiku řešit. Co je tedy rovnice? Rovnice je útvar, který je složen ze dvou výrazů, mezi nimiž je rovnítko. Je-li neznámá v mocnině na prvou, jedná se o lineární rovnici, ta je nejjednodušší.

K řešení rovnic a nerovnic se používají ekvivalentní úpravy, to jsou takové úpravy, při kterých získáme rovnici se stejným oborem řešení. Provádět můžeme i neekvivalentní úpravy, ovšem v tom případě je třeba zkouškou se přesvědčit, že získané řešení je také řešením původní rovnice. Pokud mezi výrazy figuruje znaménko větší, menší nebo v kombinaci s rovnítkem, jedná se o nerovnici, která se řeší podobně jako rovnice.

Při řešení lineární rovnice použitím série ekvivalentních úprav hledáme všechny možné hodnoty neznámé, aby po jejich dosazení do rovnice, byl splněn požadavek, že levá strana se rovná pravé. Tyto hodnoty neznámých pak nazveme kořeny rovnice. Mezi ekvivalentní úpravy řadíme výměnu stran rovnice, dále přičtení téhož čísla nebo výrazu obsahujícího neznámou k oběma stranám rovnice, vynásobení obou stran rovnice stejným číslem nebo výrazem s neznámou. Ekvivalentních úprav je samozřejmě více, pro představu však tyto stačí. Řešení rovnice potom nazýváme kořeny, pro ověření správnosti výsledku stačí kořeny dosadit do původní rovnice a vypočítat, zda se výraz na pravé straně rovnice rovná výrazu na straně levé.

Nejste si jisti, jak správně postupovat při řešení rovnice? Potřebujete si procvičit jinou oblast matematiky? Příklady.com je internetová sbírka příkladů z matematiky, která vám umožní procvičit vaše početní dovednosti. Sbírka slouží jako příprava na maturitu, zkoušky nebo k pouhému procvičení některého učiva.